Oxidative Removal of SO₂ and Recovery of H₂SO₄ over Polyacrylonitrile-Based Active Carbon Fiber

S. Kisamori, K. Kuroda, S. Kawano, and I. Mochida Institute of Advanced Material Study, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816

Keywords: SO2 removal, SO2 Oxidation, Activated Carbon Fiber

Abstract

SO₂ was adsorbed, oxidized, hydrated, and recovered continuously as aq. H_2SO_4 at $30\text{-}100^\circ\mathbb{C}$ on a polyacrylonitrile based active carbon fiber (PAN-ACF-FE-300). SO₂ of 1000 ppm in a model flue gas was removed completely for longer than 60 h at 30 and $50^\circ\mathbb{C}$ by W/F= 5.0×10^{-3} g min ml⁻¹ by supplying sufficient humidity of 10 and 20 vol%, respectively. The heat-treatment of the ACF at $800^\circ\mathbb{C}$ was found very effective to enhance the catalytic activity, the temperature appearing very best between 30 to $1000^\circ\mathbb{C}$. A pitch based activated carbon fiber exhibited less activity than PAN-ACF.

Introduction

More energy-saving, deeper removal of SO2 in the flue gas has been expected to be developed for the better environment with smaller increase of the cost. Although the wet desulfurization of flue gas using calcium hydroxide in water has been widely commercialized 1), desulfurization of higher efficiency is expected. The conventional desulfurization consumes calcium hydride, to produce gypsum of low value as by-product, or solid waste, requiring a large amount of water and leaking ca. 50 ppm of SO₂. Oxidative adsorption of SO₂ in the form of H₂SO₄ on active carbon or coke around 130°C is a basis for a dry process²⁻⁴). The present authors have reported a remarkably large capacity of PAN-ACF among various ACFs for such an oxidative adsorption^{5,6}). Such a dry process using earbon adsorbents should heat up the adsorbents after the SO_2 adsorption to recover SO₂ adsorbed in the form of H₂SO₄ on the carbon surface and to regenerate the adsorption ability. At the same time, oxygen functional groups which are introduced by adsorption and desorption of SO₂ should be removed because such oxygen functional groups reduce SO₂ adsorption ability of ACF^{7,8)}. The reduction of SO₃ into SO₂ at the recovery consumes the carbon as carbon dioxide or monoxide. The carbon adsorbent loses its weight and adsorption ability very rapidly, when flue gas of large SO2 concentration is charged. Such energy and carbon consumption is one of the critical disadvantages^{2,7}). Hitachi has proposed extraction of adsorbed SO_2 on active carbon with water, however, it took so much water to obtain a diluted $H_2SO_4^{9}$). The present paper proposes a solution of the problems, by recovering aq. H₂SO₄ continuously from the surface of PAN-ACF at the SO₂ removal temperature without any carbon loss. PAN-ACF is certainly active to oxidize catalytically SO2 into SO3 even at room temperature. Hence continuous hydration of SO₃ may allow the flow of aq. H₂SO₄ from the ACF surface to the reservoir, liberating the active sites to continue the oxidation and hydration of the successive SO2 molecule. The present process can be applicable to remove SO2 in the atmosphere as well as flue

Experimental

gas without any difficulty.

SO₂ removal was carried out at 30-100°C using a fixed bed flow reactor which is illustrated in Fig.1. A model flue gas containing SO₂ of 1000 ppm, O₂ of 5 vol% and H₂O of 10-30 vol% in nitrogen was used. H₂SO₄ was trapped at the outlet of the reactor as illustrated in Fig.1. A part of H₂O was condensed to dew drops in the reactor when water vapor of 10 and 20 vol% was introduced at 30 and 50°C, respectively. Therefore, concentrations of SO₂ and O₂ in the model gas were increased slightly and the total flow rate was decreased slightly in these cases compared

with other cases. SO₂ concentrations in inlet and outlet gases were observed continuously by a frame photometric detector (FPD). Weights of ACF examined and the total flow rate were 0.25, 0.5, and 1.0 g, and 100 ml min⁻¹, respectively.

Results

Figure 2 illustrates the break-through profiles of SO_2 at 30°C through the beds of two PAN-ACFs and three pitch ACFs of all as-received forms. The gas carried 10 vol% water in all cases. Over PAN-ACF FE-300 which exhibited the largest adsorption capacity. SO_2 was adsorbed completely until 1.6 h (the break-through time T_0), no SO_2 being detected at all at the outlet of the reactor and then SO_2 started to leak concentration increasing rather gradually to 15% of the inlet SO_2 after 5 h. The concentration was kept at this level for at least 13 h, major SO_2 of 80% was removed continuously from the flowing gas.

Other ACFs exhibited similar profile of SO₂ adsorption and removal, although the T₀ and the level of SO₂ stationary concentration were dependent on ACFs. The levels of the stationary concentration were 18% over PAN-ACF-FE 300, 22% over FE-100, 38% over OG-5A and OG-20A, and 45% over OG-10A. The higher activity of PAN-ACF for SO₂ removal was definite. The value of T₀ ranged 0.5 to 18 h, PAN-ACF exhibiting slightly longer break-through time.

Figure 3 illustrates effects of heat-treatment on break-through profiles over PAN-ACF-FE-200 and FE-300 at 30°C, 10 vol% of H₂O. The heat-treatment was very effective to decrease the level of SO₂ stationary concentration as well as to prolong the break-through time as reported before 11). A particular temperature of 800°C was found most favorable for both FE-200 and FE-300. The complete removal of SO₂ by both ACFs continued for in least 60 h at 25°C by W/F of 5.0×10⁻³g min ml⁻¹. Further higher temperature reduceed the activity.

Figure 4 illustrates the break-through profiles of SO2 at several temperatures through the bed of FE-300-800. SO2 was adsorbed completely at 100°C until 5.1 h, no SO2 being detected at all at the outlet of the reactor, and then SO2 started to leak, its concentration increasing rather rapidly to 100% of the inlet SO₂ after 10.5 h. SO₂ of 4.0 mmol g⁻¹ was captured on the ACF at 100℃. Lower temperature of 80°C extended the break-through time to 8.5 h until SO₂ was detected at the outlet of the reactor. After the break-through, SO2 concentration at the outlet increased rather gradually by 24 h until it reached to 65% of the inlet concentration, and that of the outlet stayed at the same level later on until at least 45 h. Further lower temperature of 50°C extended the break-through time to 10.5 h. At this temperature, the outlet concentration increased very slowly to 25% after 25 h. While the removal of SO2 continued, some elusion of aq. H2SO4 was observed at outlet of the reactor. At room temperature of 30°C, SO₂ was completely removed at least 60 h while no SO₂ was observed at the outlet. Elusion of aq. H₂SO₄ was clearly observed at the outlet. Figure 5 summarizes the influences of H₂O concentration on the break-through profiles of SO₂ through FE-300-800 at 100, 80 and 50℃. Higher concentration of H₂O (20 and 30 vol%) extended slightly the break-through time at 100°C and allowed the stationary removal of SO2 at the outlet after the concentration became steady. The stationary concentrations under 10 and 20 vol% H₂O were 100 and 80%, respectively. Higher concentrations of H₂O were more pronounced at 80 The stationary concentrations of SO₂ under 10, 20 and 30 vol% H₂O were 60, 55 and 10%, respectively while the break-through time was extended to 7 to 10 h. The influence of H2O concentration was more drastic at 50°C. H₂O concentration of 20 vol% allowed a steady SO₂ removal of 100%, no SO₂ being detected for 60 h, whereas 10 vol% H₂O provided 30% steady concentration at the outlet. When the steady removal of SO2 was achieved, elusion of aq. H2SO4 was observed. Hence, SO2 is adsorbed, oxidized, and hydrated into aq. H2SO4 on the ACF surface which flows out from the bed to be stored in the reservoir at the reactor outlet (Fig.1). Thus, the removal of SO2 is expected to continue. Enough water is necessary to hydrate SO3 and to dilute H2SO4 to flow smoothly through the ACF bed.

Figure 6 summarized the influences of W/F (Flow rate was fixed at 100 ml min^{-1}) on the break-through profiles of SO₂ through FE-300-800 at $100 \text{ and } 30^{\circ}\text{C}$ when humidity was fixed at 10 vol%. In the case of 100°C , break-through time (T₀) was extended drastically with increasing of W/F. When the weight of the ACF increased from 0.25 g to 1.0 g. T₀ was extended markedly from

1.8 h to 18 h. The concentration of SO_2 at the outlet was saturated to be 100% by 10-15 h when ACF of 0.25 and 0.5 g was used, respectively. When the ACF was increased to 1.0 g, SO_2 concentration at the outlet increased very slowly but continuously even 45 h after SO_2 adsorption started. Larger amount of ACF may allow the better contact of the gas with the fiber and some storage of adsorbed H_2SO_4 to fill the void in its bed.

The ACF removed SO_2 completely for 60 h at least by W/F = 5.0×10^{-3} g min ml⁻¹ at 30°C. However, 0.25 g of ACF removed SO_2 completely for 2.0 h, and then SO_2 started to leak. SO_2 concentration in the outlet increased continuously to 10% by 7.5 h, and stayed at the level until 15 h at least, leaving aq. H_2SO_4 in the reservoir. The highest concentration of H_2SO_4 trapped in the reservoir at the outlet of the reactor, was 7.3 normal when the PAN-ACF-FE-300-800 was used at 30°C with 10 vol% H_2O . The concentration should depend on the SO_2 concentration and conversion, and vol% of H_2O . Hence the ACF of the highest activity and the largest amount for the complete conversion and lower temperature which allows lower concentration of H_2O are favorable to increase the concentration of recovered H_2SO_4 .

Discussion

The oxidation and hydration of adsorbed SO_2 were found to proceed on the ACF surface at a temperature range of $30\text{-}100^{\circ}\text{C}$. The surface of the activated carbon was found to oxidize SO_2 efficiently and rapidly. The key point of the present study is to achieve the continuous recovery of aq. H_2SO_4 by supplying H_2O vapor onto ACF. The results indicate that the necessary concentration of water vapor is very much dependent on the reaction temperature, being 20 vol% at 50°C and 10 vol% at 30°C when the W/F was large enough. Higher reaction temperature requires more supply of water. H_2SO_4 can flow only when it is diluted to a certain concentration by the sufficient water on the ACF surface. Water is condensed on the ACF from the gas phase basically according to the relative humidity, although H_2SO_4 itself may adsorb water.

Fiber form of ACF may be favorable for smooth flow of aq. H₂SO₄ through the adsorbent bed. Flue gas sometimes requires further reduction of NOx after the desulfurization. Hence the temperature of desulfurization should be balanced since higher temperature is favorable for the reduction while lower desulfurization temperature requires less water. The flow of aq. H₂SO₄ may depend also on the surface structure of ACF.

It is worthwhile to note that the heat-treatment at 800 $^{\circ}$ C increased significantly the ability of SO₂ recovery. The oxidation appears to be enhanced. Such treatment may introduce the active site for adsorption^{6,7)} and oxidation¹⁰⁾ of SO₂ through the evolution of CO and CO₂ by decomposition of surface oxygen functional groups on ACF. Another interesting point is that PAN-ACF showed much higher activity than pitch ACF. Their surface structure is interestingly compared. NO probably co-existing in the flue gas may pass through ACF bed with least oxidation under the present condition as discussed in the following paper. Hence we expect separate recoveries of H₂SO₄ and HNO₃.

References

- 1) Y. Miura, Nenryo Kyokaishi, 1978, 57, 817.
- 2) K. Knoblauch, E. Richter, and H. Juntgen. Fuel, 1981, 60, 832.
- 3) Y. Komatsubara, I. Shiraishi, M. Yano, and S. Ida, Nenryo Kyokaishi, 1985, 64, 255.
- 4) I. Keiichiro, Y. Niwa, and Y. Morita, Nenryo Kyokaishi, 1985, 64, 338.
- I. Mochida, Y. Masumura, T. Hirayama, H. Fujitsu, S. Kawano, and K. Gotoh, Nippon Kagaku Kaishi, 1991, 1991, 296.
- 6) I. Mochida, T. Hirayama, S. Kisainori, S. Kawano, and H. Fujitsu, Langmuir, 1992, 8, 2290.
- 7) I. Mochida, S. Kisamori, S. Kawano, and H. Fujitsu, Nippon Kagaku Kaishi, 1992, 1992, 1429.
- 8) S. Kisamori, S. Kawano, and I. Mochida, Extended Abstr., 21th Biennial Conf. on Carbon,
- 478, Buffalo, June 1993.
- 9) K. Yamamoto, K. Kaneko, and M. Seki, Kogyo Kagaku Kaishi, 1971, 74, 84.
- 10)S. Kisamori, S. Kawano, and I. Mochida, Langmuir, in press.
- 11)S. Kisamori, S. Kawano, and I. Mochida, Chemistry Letters, 1993, 11,1899.

Table 1. Some properties of ACFs

ACFs	Elemental Analysis(wt%)					Surface area
	С	Н	N	Odiff.	Ash	$(m^2 g^{-1})$
FE-100	77.5	1.8	9.7	11.0	0.3	446
FE-200	75.8	1.7	5.8	16.7	0.3	887
FE-300	78.1	1.4	4.5	16.0	0.3	1141
OG-5A	89.6	1.1	0.7	8.3	0.3	480
OG-10A	91.6	0.9	0.5	6.7	0.3	710
OG-20A	93.9	0.9	0.3	4.6	0.5	1150

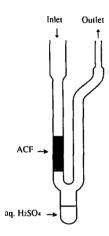


Fig.1 Reactor

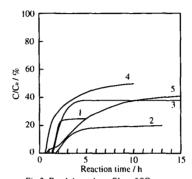


Fig.2 Breakthrough profiles of SO₂ over as-received ACFs
SO₂ 1000ppm, O₂ 5 vol%, H₂O 10 vol% W/F = 5.0×10 °g min ml °l
Reaction temp. = 30 °C
1 : FE-100 (PAN, 450m² g °l)
2 : FE-300 (PAN, 1140m² g °l)
3 : OG-5A (Pitch, 480m² g °l)
4 : OG-10A (Pitch, 710m² g °l)
5 : OG-20A (Pitch, 980m² g °l)

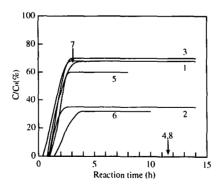


Fig.3 Breakthrough profiles of SO₂ over heat-treated FE-200 and FE-300 at 30°C SO₂ 1000ppm, O₂ 5 vol%, H₂O 10 vol% W/F = 2.5 × 10 ³8 min ml ¹(1-3, 5-7) 5.0 × 10 ³9 min ml ¹(4, 8) 1 : FE-200-600; 2.4 : FE-200-800; 3 : FE-300-1000 5 : FE-300-600; 6.8 : FE-300-800; 7 : FE-300-1000

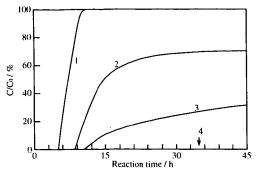


Fig. 4 Breakthrough profiles of SO2 at several temperatures over FE-300-800
SO2 1000ppm, O2 5 vol%, H2O 10 vol%
W/F = 5.0 × 10⁻³g min ml⁻¹
1:100°C, 2:80°C, 3:50°C, 4:30°C
No.4 adsorbed SO2 completely for least 60 hours

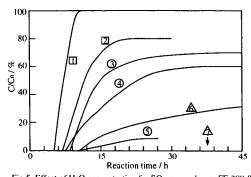


Fig.5 Effect of H2O concentration for SO2 removal over FE-300-800

SO2 1000ppm, O2 5 vol%, W/F = 5.0×10^{-3} g min ml⁻¹ 1: 100°C, H₂O 10 vol%, 2: 100°C, H₂O 20 vol%, 3: 80°C, H₂O 10 vol%, 4: 80°C, H₂O 20 vol%, 5: 80°C, H₂O 30 vol%, 6: 50°C, H₂O 10 vol%, 7: 50°C, H₂O 20 vol% No.7 adsorbed SO2 completely for least 60 hours

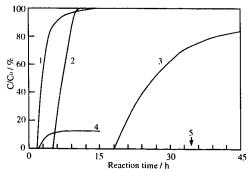


Fig.6 Influence of W/F for SO2 removal of FE-300-800 SO2 1000ppm. O2 5 vol%, H2O 10 vol%

3: 100°C, W/F=2.5×10⁻³ g min m1⁻¹ 2: 100°C, W/F=5.0×10⁻³ g min m1⁻¹ 3: 100°C, W/F=1.0×10⁻² g min m1⁻¹ 4: 30°C, W/F=2.5×10⁻³ g min m1⁻¹ 5: 30°C, W/F=5.0×10⁻³ g min m1⁻¹